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We consider an infinite chain of interacting quantum (anharmonic) oscillators. 
The pair potential for the oscillators at lattice distance d is proportional to 
{d2[log(d+ 1)] F(d)} -1, where 5ZrEz [rF(r)] -1 < ~.  We prove that for any 
value of the inverse temperature fl > 0 there exists a limiting Gibbs state which 
is translationally invariant and ergodic. Furthermore, it is analytic in a natural 
sense. This shows the absence of phase transitions in the systems under 
consideration for any value of the thermodynamic parameters. 
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INTRODUCTION 

One-d imens iona l  systems of statistical mechanics, both  classical and  quan-  

tum, are believed not  to exhibit phase t ransi t ions provided that the inter- 
ac t ion between particles decreases fast enough with the distance. A border  

case is the inverse-square-power interaction: classical one-dimensional  
systems with that  type of in terac t ion  were invest igated in ref. 3. Q u a n t u m  
systems are more  difficult to s tudy;  even for relatively simple classes of 
systems (spins on  a one-d imens ional  lattice or one-dimensional  particle 
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systems with a fermion-type interaction) the rigorous proof of the absence 
of phase transitions requires sophisticated techniques. 

In this paper we investigate a class of one-dimensional quantum lattice 
boson systems (chains of quantum anharmonic oscillators) with long-range 
interaction potentials that decrease slightly faster than the inverse square 
power of the lattice distance. The main technical tools to use are the 
Wiener integral representation <5~ and the cluster expansions which, in the 
one-dimensional classical situation, were elaborated in ref. 1. The absence 
of phase transitions is expressed here in the following terms: for any value 
of the inverse temperature fl > 0 there exists a limiting Gibbs state which 
is translation invariant and ergodic. Moreover, this state is analytic, in 
terms of the self-interaction and two-body interaction potentials, in the 
sense that the expectation values of certain observables admit an analytic 
continuation to a complex domain containing a part of the real axis. 

Our method may be considered as alternative to the used in refs. 7 and 
8. We aim to extend our results to one-dimensional continuous quantum 
systems in a separate publication. 

The paper is organized as follows. In Section 1 we formulate our main 
results (Theorems 1 and 2) and introduce basic objects for future use. In 
Section 2 the proofs are accomplished. An Appendix contains the proof of 
superstability estimates which are not related to the one-dimensional 
structure of systems under consideration. 

1. PRELIMINARIES, RESULTS, AND TECHNICAL TOOLS 

A Hilbert space ~ identified as L2(R) is associated with any site j of 
the one-dimensional lattice Z. By ~j we denote the C*-algebra of the 
operators in ~j. Given a finite set A c Z, we identify a Hilbert space WA 
with L2(R J) (which is noting but the tensor product t~)j~A o~j) and denote 
by ~,~ the C*-algebra of the bounded operators in o~A. The inductive limit 
lima ,-z ~A is denoted as 8 ;  this is the *-algebra of local observables of our 
system. Its completion in the operator norm is the C*-algebra ~ of 
quasilocal observables. In the sequel we do not distinguish between the 
operators in ~ffA and the corresponding elements of ~.  

The action of the space translation group Sy, y ~ Z, on N' is defined 
in the standard way. 

By qj and p/we  denote the position and momentum operators in 
(or the corresponding operators in ~ with A ~j) :  

q/f(xj)  = xj f(xj) ,  p j f (x i )  = --i d@ i f(xy) 
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The Hamiltonian (the operator of the energy) HA of the system in a finite 
"volume" A is the self-adjoint operator in ~A, 

HA=KA + U A (1.1) 

Here KA is the kinetic part and UA the potential part: 

KA = �89 Z pj2 (1.2) 
j e A  

and 

U.I = UA,o + UA,, (1.3) 

where UA,o is the self-interaction energy and U.~.t is the two-body inter- 
action energy 

UA,O = ~ O(qs), U,~,~ = �89 ~ ~,J-s',(qJ, qJ') (1.4) 
j ~ A  j , j '  ~A: jv~ j"  

Here, O: R --* R (a self-interaction potential) and ~ :  R x R ~ R 
(a two-body interaction potential, at distance d), de Z +, are C2-functions; 
~e  is symmetric. [We use the same symbols for denoting functions (of real 
variables) and the corresponding multiplication operators.] We list below 
the conditions that are imposed on the interaction potentials. 

(I) The function ~a(x, y)  obeys 

]Tta(x,y)l<~ ( Ix l+ l ) ( l y [+l )  x, y s R  (1.5) 
d2F(d) l og (d+  1)' 

where F is a monotone  function Z + --, R § with 

[rF(r)] -1 < oo (1.6) 
r ~ Z  

(II) In addition, we suppose that there exists r~  0 such that for any 
finite A c Z, x A = (xj, j s  A ) ~ R "~, and positive integer r/> r ~ 

U~)(xA) >~ Z (c, x~-- c2) (1.7) 
.j~ .4 

where c I > 0 and c2 e R are constants. Here 

Z  %-rr(xj, xr)+ Z O(xj) (1.8) 
j , j '  ~ A:[.i--j'[ <~ r j ~  A 
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The bound (1.7), with r greater than the length of A, is usually called a 
superstability condition. 

At a certain stage we shall need a similar condition for the derivatives: 

(III) The functions 
6" a ~ 

�9 = Y) =  Ax, y) ,  = 1, 2 

satisfy the bounds 

.< (Ixl + 1)(lyl + 1) 
I~'>(x'Y)l"~-r~7-7')'z"7-"-7-1)'- a - ~ t a l o g ~ a +  x , y ~ R ,  # = 1 , 2  (1.9) 

and 

l~(U>(x)[ ~<exp(cl x z -  c2), x ~ R ,  /~ = 1, 2 (1.10) 

where ~1 > 0 and ~2 e R are some constants. 

Examples of potentials �9 and ~u d satisfying the conditions stated are 
easily provided by "polynomial" interactions. 

A Gibbs state in a finite volume A c Z is defined by 

qkA(a)=tr(apA), a s i a  (1.11) 

where p3 is the density matrix 

PA = EA 1 exp(--[~HA) (1.12) 

E A is the partition function 

NA = tr exp(--/~HA) (1.13) 

and/~ > 0 is the inverse temperature of the system. The existence of a state 
~bA is guaranteed by the following. 

P r o p o s i t i o n  1.1. Under the condition (II), for any /3>0, the 
operator e x p ( -  3H4)  is of trace class. 

Being of trace class, the operator PA is determined by its integral 
kernel ka(xA, YA): 

pAf(xA)=~RAdyAk,t(xA, yA)f(yA) , f~L2(RA), x A , y A ~ R  A (1.14) 

where dy A denotes the Lebesgue measure on R "~. 
The quantity 2A = - 1 / I A I  In tr exp(--/3HA) gives the free energy per 

lattice site in the volume A (]A[ denotes the number of lattice sites in A). 
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Actually, it is of interest to consider qiA(a ) also for some unbounded 
operators a in ~A (this is possible when apA is a trace-class operator). 
Good examples are the position and the momentum operators qj, p j, j s A 
and functions of them such as the Hamiltonian H a and its kinetic and 
potential parts, KA and UA. It is also interesting to consider the 
Hamiltonian H j  for a "subsystem" in a smaller volume j_c A as well as its 
kinetic and potential parts. Finally, we can take a "relative" potential 
energy operator UsLA\ J = UA -- Us. 

In general, we consider operators of the form ~ j  = ~ ( q j ,  j e  J), where 
F j :  R J ~  R is a measurable function such that 

,~ (xs ) l  ~<exp [ ~  (~1x2- ~2)] (1.15) 

where 81<c l  and 82e l i  [cf. (1.7), (1.10)]. We can also treat a more 
general case where o~ is a function of an infinite number of variables, but 
its "essential" dependence is upon variables associated with a finite set 
J ~ Z .  An example of this kind is Usiz\ s, the potential energy of a sub- 
system in J relative to the whole exterior Z\J. See Theorems 1 and 2 
below. To avoid technically complicated constructions, we omit a formal 
general setup related to functions of that type; the interested reader may 
reconstruct it by following the example mentioned. 

The formalism introduced so far is indeed insensitive to the dimen- 
sionality of the system: we can replace the lattice Z by its multidimensional 
analogue Z ~, v ~> 1, and the single-oscillator phase space L2(R) by L2(Rk), 
k/> 1. Also, the potentials may not be translation invariant, in which case 
the self-interaction will be described by a family {4i,  j ~  Z} and the two- 
body interaction by a family { ~uj.j,, j, j '  sZ} .  This type of model is called 
a general system of (quantum) oscillators (later on, we make this definition 
precise). As pointed out earlier, the main results of this paper are 
formulated for the one-dimensional case (v = 1) and translation-invariant 
interaction potentials. However, some auxiliary assertions (see, e.g., 
Lemma 3 below) are of interest for purposes outside this paper and are 
stated in a general situation. 

We are interested in studying the limits of q~A and 2A when A .~ Z. 

T h e o r e m  1. Suppose that the conditions (I) and (II) are fulfilled. 
Then, for any/~ > 0, the following hold: 

(a) There exists the limit 

2 =  lim 2 A (1.16) 
A . ~ Z  

(the free energy of the infinite system). 

822/70/3-4-31 
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(b) There exists the w*-limit 

~b = lira q~ (1.17) 
A . , ' Z  

which defines a state ~b on C*-algebra ~ .  

Furthermore, the state ~b is locally normal [i.e., is given by a family 
(p(J)) of local density matrices], is translationaUy invariant, and has the 
following mixing property: 

lim qk(aiS, a2) = qk(al) O(az) (1.18) 
u .  ~ •  

Hence, ~b is ergodic, i.e., ~b gives an extreme point of the set of transla- 
tionally invariant states on the C*-algebra ~.  For any finite J c  Z, the 
operator p(S) acts in sCgs; it is positively defined, of trace class, and with 
tr p(J) = 1. 

(c) The functionals ~b(o~) [defined as tr(o~)p (J)] are finite for any 
finite J c  Z and any measurable function ~ :  R J ~  R which obeys (1.15). 
In addition, they coincide with the limits 

lim ~b4(~) (1.19) 
A , , ' Z  

In particular, this is true for ~s = Us. Moreover, there exists a finite limit 

r lim r lim Ca(UslA\S) 
~ . ' Z  A . ' Z  

(1.2o) 

(d) If, in addition, condition (III) is valid, then, for any finite J =  Z, 
the integral kernel k (s) of operator p(S) is a C2-function of arguments x j, 
yjE R J. Furthermore, qi(p~) [defined as tr(p~p({t}))] is finite and coincides 
with the limit 

lim q~.~(p~) (1.21) 
A ~ Z  

Remarks. 1. The kernels k (J) are given by the formula [cf. (1.14)] 

p('~ y j ) f ( y s ) ,  f~L2(RJ) ,  xj ,  y . ,~R J (1.22) 

where dys denotes, as before, the Lebesgue measure on R J; these kernels 
are formally determined almost everywhere with respect to this measure. 
Speaking of their smoothness property, we have in mind their variants that 
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are determined everywhere on R s. The same is true for the analyticity 
property. 

In fact, this remark holds for every kernel we deal with in the sequel, 
and for every property that is stated for any x, ,  y j E R  s. 

2. In view of the translation-invariance property of ~b, ~b(p~) does not 
depend on l and also ~b(Us~.,) and qk(Us, jtz\s~:) do not depend on u. 

The following theorem expresses the analyticity properties of the 
limiting state ~b constructed in Theorem 1. 

T h e o r e m  2. Let the functions ~0(., Zo) and ~d ( . , z l )  depend on 
parameters zls  C, l =  0, 1, in the following way: 

~( . ,  z0) = ZoO, g t a ( . , z l ) = z 1 ~  a (1.23) 

where ~b and g t  satisfy conditions (I) and (II). Then, for any f l>  0, the 
following hold: 

(a) The free energy 2 is a real analytic function of variables z0, Zl in 
the region ~ = {Zo ~ R +, zl E [0, Zo] } which has an analytic continuation 
in a complex domain in C 2 containing V.  

(b) For any finite J and any Xs, Ys ~ R J, the same assertion holds for 
the kernels k(S)(xs, y j). Furthermore, the same is true for q~(~), where Fs 
is as in Theorem 1 (in particular, for F_, = U,). Finally, the same is true for 
~(Ujj z\~). 

(c) For any finite J and a Hilbert-Schmidt operator a ~ s ,  ~(a) 
admits an analytic continuation in a complex domain of C 2 containing ~ .  

(d) If, in addition, the condition (III) is valid, then ~b(p/z) is also a 
real-analytic function of z0, zl ~ V which admits an analytic continuation 
in a complex domain containing ~//. Moreover, for any finite J and any 
x:, y j~  R J, (~?~/Ox u) k(S)(xs, y~) and (3~/~y u) k(J)(xs, Yl), kt= 1, 2, are real 
analytic functions which again admit an analytic continuation in a complex 
domain of the same kind as before. 

Remarks. 1. The variables z o and zl are subject to the restriction 
Re Zo > 0, 0 ~< Re zl ~< Re Zo in order to preserve the superstability condition 
for Im Zo = I m  zl = 0. 

2. Of course, one can admit a more general form of dependence of 
the potentials q5 and gtd on the variables z I (with the same kind of restric- 
tions as in the previous remark). We have chosen the form of (1.23) for the 
sake of simplicity of the exposition. 

3. Combining the results of this paper with those from ref. 8, one can 
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also prove a theorem establishing a (weak) KMS property of the limiting 
state r 

4. The complex domain of analyticity of r in the assertions (b) 
and (c) of Theorem 2 depends on the operator in the argument of r The 
same is true for the assertion (d), where the domain of analyticity of 
k(J)(xJ, YJ) depends on x j ,  YJ. However, under some extra conditions 
controlling the increasing of o~ or the decreasing of the kernel of a Hilbert- 
Schmidt operator a, this domain may be chosen independently of o~ or a. 
Similarly, the analyticity domain of k(S)(xs, y j) may be chosen indepen- 
dently of x j ,  Ys  running over any given compact domain in R s. In any 
case, a "width" (in "imaginary directions") of the complex analyticity 
domain varies with Zo and zl and in general tends to zero as Zo---, oe. 

In the sequel, we write 

z 0 = l + w o ,  z l = l + w l  (1.24) 

incorpotating in the potentials 45 and T d "unperturbed" values belonging 
to ~ and treating Wo and wl as small complex perturbations. 

5. As was noted before, condition (III) involving derivatives of 
functions 45 and gt d is used only for proving the assertions concerning the 
functional r 

We now introduce some basic technical tools and mention preliminary 
facts which will be repeatedly used below. The main statement of 
Theorem 1, the existence of a limitingstate r [see assertion (b)], is a direct 
corollary of the following fact. For any finite J c Z the limit 

lim p J ) =  p(S) (1.25) 
A.- 'Z  

exits in the trace norm in ~fj. Here p J) is the density matrix for the 
restriction of the state ~bA to the C*-algebra ~j :  

p (J) = trse~\jp ~ (1.26) 

By using Lemma 1 from ref. 14, one reduces the problem to proving 
that the limit (1.25) holds in the Hilbert-Schmidt norm in o~fj. It is 
convenient to pass to the integral kernels k~J)(xs, YJ), xs ,  y j  ~ R s, of the 
operators p(A s), J ~  A, which are given by 

p(J)f(xs)  = fRJ dy,  k]S)(xj, ys) f ( y j )  (1.27) 
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In terms of the kernels k(AJ)(xj, y j) the Hilbert-Schmidt norm convergence 
means that 

lim fR dx., x dye [k(AS)(xj, ys) -- k(:)(xj, 7.1)] 2 ----- 0 
A 2 " Z  a x R  J 

(1.28) 

Here k(S)(xj, y j) is a limiting kernel that defines the limiting density matrix 
p(S) in the same way as in (1.27). By Lebesgue's dominated convergence 
theorem, it is enough to check that the kernels k(A J) satisfy, uniformly in 
A ~ J, a bound 

0 <~ k<J~(xj, y , )  <~ k(,J~(xj, y j), x j ,  y.~ ~ R" (1.29) 

with k(,J)s Lz(RSx R s) and that the following pointwise convergence takes 
place: 

lira k~J)(x,, y.r) = k(J)(xj, y J), x j,  y j  6 Rj  (1.30) 
A . . " Z  

The translation invariance of the limiting state ~b follows from the 
equality for the kernels k('~ 

k(J)(xs, yj)=k(&a)(S~xa, S~ys), x j ,  y s ~ R  s, u e Z  (1.31) 

where S j =  (j:  j -  u ~J)  and Suz I denotes, for zj  = (zj, j e  J )  ~ R J, the 
element of R &-' given by 

S , z  s = (zS,, j '  ~ S~J) with zj, = z j ,  

The proof of the mixing property (1.18) proceeds in a similar way. 
Here the problem is reduced to proving the following relation for the 
limiting kernels kCJ>: 

lim k {J"~ sJ%(xjil~ v S~xji21, Ys~ v S ,  yj~2~) 
u ~ oc? 

= k(JIl))(xj~,), yjo))k(JI2>)(xji2~, y j<2>) (1.32) 

x ~ ) ,  y~,)  ~ R "~'), x~2), y~2~ ~ R a*2~ 

The symbol ~/ indicates the operation of "gluing" configurations over 
nonintersecting volumes on Z. 

The ergodicity of the limiting state ~b follows from the mixing property 
by virtue of general theorems (see, e,g., ref. 1). 

Let us now comment on the existence of ~b(o~j) [see assertion (c) of 
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Theorem 1 ]. Without loss of generality, we can assume that the function o~s 
is nonnegative. We can write 

~ (~ )  = f.~ dx~ k~(x~, x~) o%(x~) (1.3 3) 

A similar equality holds for ~b(~j). Under the condition (1.15) we will 
establish the estimate 

k~J'(xj, x s ) o ~ ( x e ) ~ e x p [  - ~, (_c14--_c2) 1 (1.34) 
j ~ J  

for some constants Cl>0 and _c2sR depending on o~, but not on 
xs,  y j e R  J. The existence of the pointwise limit in (1.30) and Lebesgue's 
dominated convergence theorem will then imply the convergence to a finite 
limit in (1.19) and the coincidence of the limiting value with ~b(~). 

In a similar way one can prove the existence of the limits in (1.20) and 
their coincidence with ~b(Ujrz\~). We omit a detailed argument, since it is 
the same as in the case of qla(p~). 

Finally, the smoothness of the limiting kernels k (J) and the existence of 
~b(p~) [see assertion (d) of Theorem 1] is established as follows. For  any 
finite A c Z and J___ A the kernel k(A J) is a C2-function of the variables 
xs, y j  and it indeed converges to a limit, as A ~ Z ,  together with its 
derivatives 

67~' Ou 
67 ~ k~)(xj, y j) and ~ k(J)tx OyU A~ s, Ys), j e J ,  xs, y s s R  s, # = 1 , 2  

(1.35) 

Moreover, the convergence is uniform in xs,  y j  running over a compact set 
in R J. Fubini's theorem then implies that the limiting kernel k (J~ is a 
C2-function of x j,  y s ~  R J and that the limits of the derivatives coincide 
with the derivatives of the limiting kernel. 

In addition, we establish a bound: for any finite A c Z and J___ A, 

a~ YJ)[-xs=ys [ ] ~xuk(A~)(xs, ~<exp -- Z (01x~--~2) (1.36) 
j E J  

where, for a fixed J, constants 71 > 0 and g2 ~ R do not depend on A and 
xs,  y j ~  R. We then write ~bA(pl z) as an integral 

l  137, 
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A similar representation holds also for ~b(p2). After the estimate (1.36), the 
existence of a finite limit of the quantity (1.37) and its coincidence with 
~b(pt z) follows, as before, from the convergence of the derivative (1.35) and 
the Lebesgue dominated convergence theorem 7. 

A key role in the proof of the assertions stated is played by the Wiener 
integral representations for the partition function Z~ and the kernels k(A s), 
J c A, which follow from the Feynman-Kac  formula for the integral kernel 
eA of the operator exp ( - f lH~)  (see ref. 5): 

eA(xA,yA)=fW(~ ) dP(~)y~(coA)exp[--VA(o~)], x~,yAeR A (1.38) 
XA "YA 

Here, the space W (~) is the Cartesian product XA, YA 

WtB) 
X j E A  xj, yj 

where XA=(Xj, j~A), yA=(yj, j~A), and W (t~) x , y ~ R ,  is defined as the x, y '  

set of continuous functions (paths) a~: [0, fl]--* R with o~(O) = x, o~(fl)=y, 
which is endowed with the standard Borel space structure. Furthermore, a 
measure P(~) is the product ;CA, YA 

p(a) 
X j ~ A  xj, yj 

where Pf)y is the nonnormalized conditioned Wiener measure on W (p) X, y 

(this means t h a t  (~) (a) --1/2 P~,y(W~,y) = (2rcfl) exp[ - -  1/2fl(x--y)2]). Finally, 
V(o~A) is the "potential energy" of the path "configuration" egz= 
(ogj, j ~ A) ~ W ~  ), y .  In analogy with (1.b), (1.2c) we set 

VA(O~A) = VA,o(CO~)+ VA, I(OOA) (1.39) 

where 

Vo(~z) = ~ ~o(coj), VI(e)A) = �89 ~ ~ls_j,t(coj, coj,) (1.40) 
jr=A j , j ' ~ A : j v a j "  

~o(co) = ~(o)(t)) dt, Od(~O, e)')= gSd(~O(t), Of(t)) & (1.41) 

For the sake of simplicitly, we omit the index (fl) from the notations. 
We also identify the space W ...... x ~ R ,  with a single space W = W o . o  
by means of the mapping m--*a)+x.  Measures P.~.x and P = P o ,  o are 
transformed thereby into each other. A measure space (WxA.xA, PxA .~) will 

7 As a byproduct of this argument, we get that ~(P/) is finite (and equals zero). 
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be identified with the product-space (W A, pa) .  Sometimes it will also be 
convenient to use the map Wx, y --. Wo.o given by co ~ co + Lx, v, where Zx, y 
is the linear function Lx, y ( t ) = x + t f l - l ( y - x ) .  The measure Px, y is 
transformed thereby into e x p [ - 1 / 2 f l ( x - y ) 2 ] P o . o .  The product-space 
Wx,,y: is transformed into W J be a vector analogue of this construction, 
where the function Zxj, ys(t)= x j - } - t f l - l ( y j -  X j) is used. 

It is easy to check that, under our conditions on functions r and ~a, 
the kernel eA is a continuous function of variables xA and ya .  According 
tc. "vlercer's theorem and out previous arguments, we can write the 
foiiowing formulas for the partition function ZA and the kernels k(AJ): 

and 

where 

"~ A = fRA• wa dUA dPA(COA) exp[ - -  V(COa + UA)-[ (1.42) 

k~:)(xJ, YJ) = (ZA) - l 2~J)(xs, y j), x j,  y j  �9 R J ( 1.43 ) 

x ~wJ dPS(cos) exp[ - VA(((.LIA\ J -t- UA\j) V ((.Oj "}- l---"xj,yj)] 

(1.44) 

Here coA + uA is the collection of the shifted trajectories (coj + uj, j � 9  A), and 
du 4 is the Lebesgue measure on R 141. The symbol V has the same meaning 
as in (1.32). 

We give at this point a scheme of the proof of Proposition 1.1 and 
Theorems 1 and 2 (taking into account the intermediary assertions stated 
so far in the course of the exposition). 

Using formula (1.38), we reduce the problem of proving Proposi- 
tion 1.1 to checking that the integral in the RHS is finite for any value of 
/~ > 0. This is a straightforward (though tedious) calculation based on the 
superstability condition (1.7). See the bound (2.32) in Section 2 of this 
paper. 

The above arguments show that part (b) of Theorem 1 follows from 
Lemma 1 (see below). Furthermore, the proof of the part (a) is contained 
in the proof of this lemma. 

k e m m a  1. Assume that the interaction potentials r and g"d satisfy 
conditions (I) and (II). Let the kernels k~ JI be given by (1.43). Then the 
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pointwise limit (1.30) exists and the limiting functions k (-') obey (1.31), 
(1.32). Moreover, the kernels k~ s) (and hence also the limiting kernels k (s)) 
satisfy the bound (1.29) uniformly in A with a function k(, J) that has the 
properties listed above. 

For any function ~ obeing (1.15) the bound (1.34) is fulfilled. 
If, in addition, condition (III) is valid, then the kernels kCA J) are of class 

C 2 in the variables x j, Ys and they converge to limits together with their 
derivatives (1.35). Moreover, this convergence is uniform in Xs, Ys running 
over a compact set in R< Finally, the bound (1.36) holds. 

Theorem 2 follows from Theorem 1 and Lemma 2: 

ke mrna  2. Assume that the potentials r and ~a, d~> 1, depend on 
the parameters Zo, z~ as indicated in (1.23). Under conditions (I) and (II), 
for any fl there exist neighborhoods (9o, (91 of the origin in C such that, for 
any finite A c Z, 2A admits an analytic continuation in wt~ (9r and 12AJ is 
bounded uniformly in A and w~ ~ (9~, l =  0, 1. Furthermore, as A/" Z, the 
analytic functions 2A converge, uniformly in (90 x (91, to a limit which is 
again an analytic function in we ~ (gt, l = 0, 1. 

Similarly, for any f l>0 ,  any finite J c Z ,  and any xj ,  y j ~ R  ~, there 
exist neighborhoods (90 and (91 of the origin in C such that for any finite 
A ~ J the kernel k~J)(xj, y J  admits an analytic continuation in a domain 
(90x(91 and fk~")(x.,yj)l is hounded uniformly in A and w~a(_9~, l = 0 ,  1. 
Furthermore, as A , Z ,  the analytic functions k~J)(xj, y J  converge, 
unformly in (90 x (91, to a limit which is again an analytic function in we e (9, 
l = 0, 1. If x j,  y., run over a compact set in R J, then the neighborhoods (9' 
may be chosen independently on x: ,  y., and the convergence is uniform 
in x j ,  y j .  

Moreover, similar assertions hold, for any/? > 0 and finite J c Z, for 
~bA(a), where a is an operator in ~ of the kind considered in assertions (b) 
and (c) of Theorem 2. 

If, in addition, condition (III) is valid, then the same assertions hold 
for the derivatives (1.35) and ~bA(p 2) given by (1.37). 

The proof of Lemmas 1 and 2 are similar and are given in Section 2. 
In the following we shall use the notation 

S = R x W and s = (x, co) e S ( 1.45 ) 

as well as 

S = R x R x W  and g=(x ,y ,  co)6g (1.46) 
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O f  course, S m a y  be identified as a "diagonal  par t "  of S; in the sequel we 
use this fact wi thout  ment ion ing  it. The spaces S and g are provided  with 
the norms 

Ilsllr = Is(t)l ~ dt_] ~/~, r = 1,2 (1.47) ] 

and 

where 

I[gll~:[f~ [~(t)l~ dt] l/r, 

s ( t )  = x + o)( t ) ,  

Given a finite J c Z, we denote  

Sg = (sj-, j ~ J )  ~ S J ( = R J • Wg), 

or, equivalently,  

Sj = (X j; (d)j), Xj E R J, 

and 

r = 1, 2 (1.48) 

g(t) = Lx, y(t) + oJ(t) 

sj = (xj.; coj) ~ S (1.49) 

mj  ~ W J 

where 

SJ)(gs) = ~sA\J dsA'J exp[  -- VA(g J V SA\s) ] (1.52) 

~ j = ( ~ j , j ~ J ) ~ S J ( = R J • 2 1 5  s j=(x j ,  y j ;ogj)~S (1.50) 

or, equivalently,  

gj=(xs, yj;e)j), x j ,  y j ~ R  J, a ) j ~ W  J 

As before, sj and  gj are called pa th  configurat ions over  3.. 
We also denote  by dsj the measure  dug dP(oJj) on S J and  use, as 

before, the no ta t ion  sj v s j, (and also sj v gj,, ss V s j,, etc.), J and J '  
being nonintersect ing finite subsets  of  Z, for the opera t ion  of  "gluing" pa th  
configurations.  The  space t ransla t ions  Su, u ~ Z, act on p a t h  configurat ions 
in a natural  way: they m a y  S J onto  S suJ and t rans form the measure  
dusdP(o~s) to dusjdP(o)s=j). We can then use the no ta t ion  q~(s), 
~lj_j,j(sj, sS), VA(SA), and VA(SA\j V SS) and define 

k(AS)(~J) ---- (•A) -~ E~)(gJ)  (1.51) 
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This allows us to write 

k(AJ)(x:, y j ) =  exp [ - -1/2f l  ~ (xj--yj)  2] fwjdPS(agj)k(AS)(gs) (1.53) 
j E J  

with ~o s = (coj):~ j and gj = (gj)j~ j ,  where ~j = (xj, &; ~oj). 
We are now going to write down formulas for the derivatives (1.35). 

For  the sake of brevity, we restrict ourselves to the case of the derivatives 
3U/3x;; obvious modifications needed to cover the case of ~/ayy may easily 
be done by the reader. Introducing the notation 

~p~)(~)= dt (1 -fl-lt)"~(u)(~(t)), p = 1, 2, geS (1.54) 

d/(au)(g,U)=Jodt(1-fl-It)u~a(g(t),Y,'(t)), # = 1 , 2 ,  g,g'~S (1.55) 

and 

(VA)('U)(SA)=(qo('U)(sj)-~ Z 5"]'('u)[j--j'l~'~j, ['~ SJ')' ~A = (S~, a~E A) (1.56) 
j 'EA:h'q=j 

we can write, by using (1.42)-(1.44) and (1.51)-(1.53), 

a k ~ ( x ~ , y A =  _ ( 2 ~ ) _  ~ ( x j - y j ) 2 A x ~ , y A + ( = ~  ( x ~ , y j ) ) j  
~xj 

(1.57) 

where 

A ~ J~ .,VJllj 
.~e J J 

fs VA) j (sj v SA\j) e x p [ -  v x ~v dsA\.,( ~ - V . , ( i j  sA\j)] 

~s= (x j, y j; ooj) (1.58) 

and 

8x] " ' J' .v j ,  = (ZA (xy--yi) 2 -  .EA(Xj, y j) 

p2 . . ] 
+-~ (xj - y~)(~ ~ - ~  ( x ~, yA)p  ~ - (ST(x. , ,  y.,))}~' (L59) 
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where 

,(1) S X ;wsdPJ(coJ) fsA\sdsA\j { [ - ( V A ,  j ( - j  V SA\ j ) ]  2 

+ (VA)JzI(ij v SA\j) } exp[-- VA(gj v SA\j)] 

gj = (X j, y j; mS) (1.60) 

The idea that we follow in the sequel (see the end of Section 2) is to 
treat separately the addends in the square brackets [ . - . ]  in (1.57) and 
(1.59) and, in the case of (1.60), the single addends in the braces {---} in 
the integrand. Furthermore, those addends are decomposed into series, 
according to (1.56), and we deal with a single term in such a series. In fact, 
at a certain point we need to consider separately the "positive" and 
"negative" parts of these terms, meaning merely the integrals of the positive 
and the negative parts of the corresponding integrand. For example, the 
positive part of a term in the RHS of (1.60), which, after decomposing 
quantity (VA)~2)(~j v s~\s), corresponds to ~lj_j,l(~/, ~j,), is 

exp[  '21 

x exp[-- FA(gs v SA\s)], g~=(xs, ys;ms) (1.61) 

We use, for the positive and negative parts of such a term, a conventional 
notation [(Z(Jl(Xs, " x~(u)lsingle yJJJj J +_ �9 

We conclude this section with a lemma containing the basic probabil- 
ity estimate for a general system of oscillators. As noted before, a general 
system of oscillators may be considered on a multidimensional lattice Z v 
and have L2(R t) as a single-particle phase space, v, li> 1. We now make 
this concept precise. In Lemma 3 below, by a general system of quantum 
oscillators (in a finite volume A : Z v) we mean a probability distribution 
on the path configuration space SA (or on its subset such as S A or 
WjxS A\J, where J ~ A ) .  By a path we now mean a multidimensional 
Wiener trajectory m: I-0,/~] -~ Rt; all objects introduced so far are extended 
to this case without difficulties. 

The structure of a probability distribution is motivated, for example, 
by the formula (1.51). More precisely, such a measure is determined by a 
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normalizing denominator which has the form of an integral, over a subset 
of gA, with a nonnegative integrand. In other words, we follow the defini- 
tion of a Gibbs measure in classical statistical mechanics, in a situation 
where the role of a "spin" is played by a path. 

In these terms, the denominator SA determines the "original" measure 
on sA: 

1 
:-- dUA dpA(COA) exp[--  V(coA + UA)] 

Other example of interest are measures on W J x S  A\J determined by 
the denominators ,~(J) (x j ,  y j )  and ---}-[(~"l~(J)(xJ, f "13(P)'lsingleA +. , Xj ,  yjE II J, 
# =  1, 2, provided that they do not vanish, of course (in the case l >  1 
where derivatives are replaced with gradients, we treat separately different 
components of the corresponding vector and tensor functions). 

Furthermore, given a nonnegative function gj: ( S f ) J ~ R  " and a 
Hilbert-Schmidt operator a in ~ [ = L2((Rt)S)] with a nonnegative kernel 
~r (W) s x (Rt) J --, R +, we can speak of measures on S A determined by the 
denominators -EA(#j) and ZA(a) given by 

Z A( #j) = fs~ ds A gs(s A) exp[ - V A(S A) ] (1.62) 

and 
( .  ( .  

-~A(a) = JsA\~ ds A\s j~j dgj d (yj ,  x j ) exp[  V~(gj v s A\~,)] 

gs= (Xs, y j; cos) (i.63) 

In a general case (of complex-valued function and kernels), we can 
deal with the positive and negative restrictions (of both positive and 
negative parts) and consider the corresponding probability measures on S A. 

Further, an "energy" VA(gA) of a path configuration sA ~S A may be 
generated by a non-translation-invariant, multibody interaction which is 
described by a family {~j, jE  Z v } of the self-interaction potentials with 

sup sup I~j(x)l ~< _x < oe (1.64) 
j e Z  v xERI: Ilxll ~< 1 

and a family { gta, B = Z v } of the interation potentials. Here, g~B describes 
the contribution, to the potential energy, of a subsystem of oscillators over 
a finite set B c Z v. We assume that gt e is a function (R~) ~---, R. Actually, 
for our purposes it is sufficient to assume that ~u B is nonzero for a finite 
collection of sets B with IBI >_-2. As for B with IB] =2,  we assume that 

[~J{j,j,}(Xj, Xj,)I ~< ~(llxjll + 1)(ll&ll + 1)[ j-- j ' [  -(v+~) (1.65) 
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where ~ and r/are positive constants and lJ-J'l is the Euclidean distance 
between j and j ' .  The condition (1.7) is preserved (with obvious modifica- 
tions in the corresponding definitions). 

We use the notation mA for a measure of one of the types previously 
considered. In analogy with (1.51), the "local" density in a volume J c  A is 
denoted by ktS)~g ~ ~ s .  

mA ~, J ] ,  

I . emma  3. Consider a general system of quantum oscillators, as 
specified above. Then for any c* e (0, ci) Csee (1.7)] there exists a constant 
c* ~R (depending on a measure ma) such that for any finite A = Z and 
J c A and any gj = (gj, j e J) e SJ 

k~)(gs) <~ exp [ -  j~s (c* llgsll~-c*)] (1.66) 

The constant c~' may be chosen to be uniform for measures with the same 
form of the denominator provided that, in the RHS of (1.7), (1.64), and 
(1.65), Cl and r/ are separated from zero and cz, _c, and 6 are varying 
in compact sets. In the case of the measures on W S x S  A\j with 
the denominators ~J)(xj, ys) and + [(Z~)(xs, " ~)l~ingl~ X:, ys~R s, - -  ,v j l ,l j I -I" 

/~= 1, 2 (and fixed interaction potentials), constants c* and c~' may be 
chosen uniformly for xs, ys~ O, where O c (Rk) s is a compact set. 

The proof of Lemma 3 is carried out in the Appendix. 

2. PROOF OF L E M M A S  1 A N D  2 

The proof is based on methods developed in ref. I. For completeness 
we reproduce a construction used in ref. 1 to transform our "ensemble" of 
interacting paths into a polymer system. We start by treating the partition 
function NA for the unperturbed Hamiltonian H [that is, for w0 = wl = 0 in 
(1.24)]. Let L, n, p be positive integers and A (=AL, , .p )c  Z be a interval 
of length [A I=  (2p + 1 )L + 2pnL, centered at the origin. 8 The interval A is 
decomposed into pairwise disjoint consecutive intervals, or blocks, A; and 
B,. (alternatively called blocks of type A and B, or briefly, A- and 
B-blocks): 

Ap= A_pu B_pu A_p+ 1 " "  w B_l u Aow Bo'" k3 Wp-l kJ Ap 

8 The term "interval" and  the notation [~, ~ ' ]  are used here and below for intervals on the 
lattice Z. By centered at the origin we mean  that  the origin coincides with the rightmost 
point of the A-block Ao (see below). 
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where [A;[ = L, [Bil = nL. Furthermore, for any i =  - p  ..... p -  1 we decom- 
pose the B-block Bi into n consecutive intervals (blocks) of length L: 

Bi= U Bi, k, [Bi, kl = L  
k = l  

The blocks Aj and Bj, k are sometimes called elementary. 
The block partition of volume A allows us to write a path configura- 

tion sA s S A as a sequence 

(SA_,, SB_~,..., SB,, SA~) 

and furthermore a path configuration ssj ~ S Bj as 

(SBj,~,.-.,SB!,,) 

and to use the notation introduced so far. In particular, given an integer 
L > 0, the potential energy of a collection sA may be written as the sum 

V<-L(s~) + V>r(s~) (2.1a) 

(the subscript A is omitted for the sake of simplicity). Here V -<c includes 
the self-interaction energy and the energy of two-body interactions at 
distances ~<L: 

V<'L(s ~) = Vo(sA)+ V~L(SA) (2.1b) 

V?L(SA) = �89 ~ Ot~Si,~(Si, Sr) (2.1C) 
i,i' ~ A : i r  

and V > L(s~) is the remaining part of the energy containing the long-range 
two-body interaction terms: 

V>L(SA)=I ~ ~k>L li_i,l(si, Sr) (2.1d) 
i , i ' ~A  

where [see (1.41)], for s, s ' s S ,  

s ' )  = o 

and 

if d<~L (2.1e) 

if d > L  (2.1f) 

that in the cutoff interaction picture the nonadjacent element blocks do not 
interact. 

> L  r g'a (s, s') = Oa(s, s ) - O(s, s') (2.1g) 

We call V ~L the short-range part of the interaction energy. Notice 
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We then denote by NA the collection of triplets 
C =  {Aj, Bj, Aj+I}, -p<<.j< p. 

With this notation we can write 

v~(sA) = y"  w'l~(so) 
c e ~ a u ~  

Therefore, calling Oc = exp[ - W>C(sc)] - 1, we get 

e x p [ -  V>C(sa) ] = 1-I [1 + Oc(Sc)] = 1 + E 

Let us now consider the long-range part of the interaction. Given two 
blocks D and D' (not necessarily distinct), we set 

W>C(sD, sD,)= ~ ~ 017_L~,r(s,, s~,) (2.2a) 
i E D  i '~D"  

For  a pair C =  {D, D'} we then write 

W>Z(Sc) = W>L(SD, SD,) (2.2b) 

We denote by cd.~ the collection of block pairs C of the following form: 

c = {A j, A j, }, -< " "' -p .~ . j , j  <~p, j ~ j - - l , j , j + l  
~< ., j ,  C={Aj ,  Bj,}, -P<~J<~P, -P--~3 <~p-1,  # j , j - 1  

c =  { ~ : ,  s~ , } ,  .< �9 "' -p.. . .J,J <.p 

Furthermore, given a block "triplet" {A j, Bj, Aj+I}, we set 

W> Z( s.4j, s s~, s.~j+,) = W> L( Aj, Aj + ~ ) + W> L( S Aj, S Sj) 

+ W>Z(Ssj, ssj) + W>L(Ssj, SAj+,) (2.2C) 

of the form 

(2.3) 

+ Z FI ZM(S~k) zM(s,,~+,) 
Y c { - - p , . _ , p }  k ~ Y  c 

x FI [1--  ZM(SAk,) ZM(SAk,+,)] (2.5) 
k ' e  Y 

I-I Oc(Sc) (2.4/ 

To give an idea of the proof, let us consider the term corresponding 
to unity in (2.4). We first introduce a cutoff on the path configurations sk 
for k s A j, j e -p,..., p. That is, we write 

P 

1 = 1-I {[zM(%) zM(%+,)] + [1 - z,~(s~j) z~(s~j+,)]} 
j = - p  

P 

-- [ I  ZM(S~)ZM(S~,+,) 
j = - - p  
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where ;~M denotes the indicator function of a set of path configurations that 
will be defined later. 

Let us consider the following quantity: 

exp[--  V<L(sA)] 

It can be written as 

p 

l--[ ZM(SAj) ZM(SAi+ ~) (2.6) 
j = --p 

p 

exp[-- i ~z 5VA-.(SA-.)] I-I ZM(Saj) T(s.~: SB: S~j_~))~M(SAj+,) 
j = - p  

x exp[--  �89 (2.7) 

where 

T(SAj; S sj; s A:~ ~) 
n - - I  

= r(sAssBj.,) l--[ T(%k;s. .+O T(sB.;s~:§ 
k = l  

(2.8) 

and 

T(So;So,)=exP[�89 - V<L(So v so,)+�89 (2.9) 

Let T (=TL)  denote the linear integral operator generated by the 
kernel T. This operator acts in a space of functions on S sL [-this may be 
C(S:'),  LI(S sL, dsrL), or L2(S JL, ds:L)], where JL is the single lattice interval 
of length L (it is convenient to set JL = [0, L - 1 ] and write S z instead of 
S :~ and s L instead of s.,~). The operator T transforms a nonnegative 
function into a positive one and is compact. According to the Krein-  
Rutman theorem (6) (in either version), it has a unique positive eigen- 
function v (=  v L). The corresponding eigenvalue ~ ( =  Y L) is not degenerate 
and gives the maximal point of the spectrum of T. Finally, the width of the 
gap between y and the remainder of the spectrum is positive. 

A similar assertion holds for the adjoint operator T*; its extremal 
eigenvector is denoted by v* (=v*)  (the corresponding eigenvalue y* 
coincides with y). We normalize v and v* in such a way that 

<v, v*> = 1 (2.10) 

Here and below <., - > denotes the scalar product in L2(S L, dSL): 

(v, v* ) = fs~ dsL v(sL) v*(sL) 

822/70/3-4-32 
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By using space translations Su we can define the "shifted" functions v(sA) 
and v*(sA), j =  -p,..., p; for these functions the relation (2.10) will hold for 

any j. 
Now let ~A denote the family of pairs {Ai, Ai+a}, -p<<.i<<.p-1. 

If C= {A i, Ai+I} ~(ffA, we define 

T(n)(S Aj; S Aj+ l) 
pZc(Sc)= 1 (2.11) ~"v(s A) v*(s,~j+~) 

Here, for m >I 2, T(m)(s, s') is defined iteratively by 

T(m)(s; s') = f ds" T (m- a)(s; s') T(s"; s') 

where s, s', and s" stand for path configurations over appropriate intervals 
(e.g., for SEo, L_ al, So, t.(m + a)/.-- 1], and sE0~_ 1)L+ a,,-t-3, respectively). 

Returning to (2.6), we can write 

f dSA exp[--  V~L(SA)] h ZM(S,#) 
j=--p 

= ~2pn f dSA_p X- -"  X dSAp pill EV( SAJ )v:~(SAJ+I) 
j=--p 

x ZM(SA) Z~t(SAj+~)] exp[ -- �89 V,4_p(SA_,)- �89 VA,(SAp)] 

x[l+ y, 1-le~(s~)] 
Ac~A CEA 

(2.12) 

We can now specify the reference system around which we perform a 
perturbative expansion. This system is formed by a family of independent 
path configurations over A-blocks. The partition function of this system is 
precisely the term corresponding to unity in the RHS of (2.12). 

Let us now explain how we make this expansion. For Fceg~ u~,~ we 
define 

B(F)= {i: 8~ U C} 
C~F 

(2.13) 

and 

B'(r) = I-p, p]\B(/') 
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We start the argument by writing 

f dsa exp[-- V(SA)] 

T(s,~i; s~;; s~,+~) 

1~ ~A C~ ~A i t  B(F) C~ P 

T(n)(s  A~; S Aj+ 1 ) 
• 17 7" e x p [ -  �89 Va_,(sLe)] e x p [ -  �89 Va,(sap)] 

j ~ Bc(F) 

(2.14) 

We have used here the fact that, if there is no coupling between a B-block 
and anything else coming from the Qc terms, we can perform the path 
configuration integration over this block. We finally get the region 
Uie~c(r) Bi, where we deal with the nth iterates T" of the operator T. 

The next step is to analyze the t e r m s  T(n)(SAj;SAi+I) for j~Br 
according to whether or not the path configuration SAj belongs to a subset 
of S Aj where gg  = 1. As before, we write 

1 = 17 {EZ~(~A) ZM(%+,)-I + I-I--zM(s+)zM(sA;+~)-I} 
j e BC(/') 

= E lqZM(~,OZM(S~,+,) lq [1--ZM(SA) ZM(%+,)] 
I = ,..~c(F) i ~ I j e .~c(F)\ I  

(2.15) 

and then 

T(~)(sAj; sAj+~) 
1-I 

J ~ ~c( r )  ~ n  

T(")(sA,; SA,+I) ZM(S A,) ZM(S A,+L) = 2 1 7  
I ~ B c ( I  ") i ~ l  

T~")(s #; s ~j+~) 
• 1-I z," r l -Z~(s'OzM(s'~+~)] 

j e B , (F ) \ /  

(2.16) 

For the terms with i~ I we write 

T(")(SAI; S.4,+,) 
, 

T(')(SAi; ( SAi+I) , ,  \ 
= - 1 + 1 )  v(s~,) v*(s , , ,+ , )  

\7~ v*(s A,§ 

= [1  + e~-(s~-)] v(s~) v*(sA,+,) (2.17) 
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where C =  {A~, Ai+ ~ }. Therefore, if we identify our pair C = {A~, As+ ~ } 
with site i, we get 

T("I(s A,; S A~+ ~) 
17[ v" zM(s~) zM(s~,+i) 
iEI  

Y = I  C ~ Y  i ~ l  

We then collect the product terms 

H [1-z~,(sA)z~(sAj+,)] 
i E Bc\I 

calling them 

H eb(s~) 
C ~ Be(/- ')\ /  

H V(SA) XM(SA.) V*(SA,+I) ZM(Sa,+,) (2.19) 
i E l  

As a result, we get 

T~176 aj; s Aj+,) 

j ~ Be(F) 

I ~ B c ( F )  Y = !  C e Y  

• I-[ o~(s~) I-I v(s.,,) ZM(SA) V*(S.,+,) ZM(SA,+,) 
C~ Bc(F)\I i t  I 

T(~(s . ;  s . + , )  
x I-[ (2.18) 

j ~ Bc(F)\I ] In 

Let us note that, given I c B C ( F )  and Y c I ,  if a pair C =  {As, Aj+I} 
appears as an index in a term 02c(Sc) with C s Y= I, it cannot appear 
simultaneously as an index of Q~ [in which case C would have to belong 
to B*(F)\I] .  

Collecting all the previous expressions, we get 

f dsA e x p [ -  V,~)] 

=<" X X E 
F=~AW.6~ I=BC(F) Y = I  

x f dsea\U'~B~'r' a' exp[ -- �89 Va_flsa_p) - �89 VaflSap)] 

X H T ( S A i ; S B ' ; S A i + ' )  

i~ Bc(F) C ~  F C e  Y C r  B e ( F ) \ /  

x 1-I T"(s . ;  sa,+~) 
j E  B e ( F ) \ /  ~)n 



Gibbs States for 1 D Lattice Boson Systems 1009 

The term 

can be seen 

C e  Y C~ Bc(F')\I 

as associated to a pair (F~,F,), where F3, / '4  c fg~, 

FI &(so) 1-I (2.20) 
C~F3 C~F4 

(the principle of the notation will be clear below). 
We now want to express the partition function of the original system 

as that of a polymer gas where the interaction is a hard-core exclusion. 
Given C s ~A w ~'A w NA [that is, C is either a pair of blocks of one of the 
types indicated before or a triplet (Ai, B;, Ai+~)-l, we define the support of 
C, denoted by C, as 

�9 : . . _  i : A i E C  / i : B i ~ C  t Br i = C  

Note that in this way we have added the two neighbor A-blocks to any 
B-block which appears in C. 

Now let us consider a quadruple R =  (F j , / ' 2 ,  F3, / '4)  with Fl c cgA, 
/'2 c@A, and / 3 , / " 4 c ~ A  �9 A quadruple R is called admissible [which 
means that it could appear in the expression (2.19) as a particular term in 
the sum Z r  ~1 Z r]  if F3 n F4 = Z and moreover, if, for any block Bi that 
enters some pair or triplet C s F 1 w F2, the pair of the two neighbor blocks 
A;, Ai+~ does not belong to /'3 w F4. The last condition comes from the 
fact that, by construction, a pair {Ai, A~+I} appears only in association 
with the intermediary B-block B ,  Hence, if B ~  C, where C is from 
F~ ~/ '2 ,  then the pair {A,., A~+~} can appear as an index neither in a term 
~2c(Sc) with Ce Y c l c B " ( I ' )  nor in a term e~c(Sc) with C~B"(F)\I  
(recall that we identify {A~, A;+ t } with site i). 

If the block pairs or triplets C~ and C 2 belong to UT= ~ F;, we say 
that C~ and C2 are connected if C1c~C'2#~.  An admissible 
R = (Fx, /'2, /'3, /'4) is called a polymer if, for any C and C'  ~ 04= ~ F~, 
there exists a sequence Cj, j = 1,..., k, such that any Cis  U4=, F~, C~ = C, 
Ck=C', and Cj and Q.+I are connected for l<~j<<.k-1. 

If R =  (Ft ,  F2, F3,/ '4) is a polymer, we let I(R) be the set of those 
values i for which either the corresponding B-block B; enters some 
CsF~ w 1"2, or a pair {A i, Ai+, } s F 3. Furthermore, J (R)  denotes the set 
of those values i for which the corresponding A-block A; enters some 
C e F~ w/'4. We define the support of R by 
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For any polymer R it is easy to see that the support /~ can be 
decomposed into the union of pairwise disjoint intervals: 

K 
J ~ = U G i  

i = l  

Here K =  K ( R )  and G; may be either an A-block Aj [in which case j s  J (R)  
and Aj does not  enter any triplet {Ai, B;, Ai+l} with i s I ( R ) ]  or a union 
corresponding to a chain of consecutive triplets: 

G i =  At v.a Bt~ vo Ati+ l vo .-. k.) Bli+m~tO Al,+mi+ l 

Let us define the probability measures on S~: 

Here, if G = A,, then 

K 

#R(ds~)= I ]  I~c,(dsGi) (2.23) 
i= I  

dUG(so) u*(sA,) u,(sA,) 
dsc 

and, if G =  Atvo Btto At+ l w .. .  w Bt+ m w Al+m+ l, then 

dl.t~(sG) 
dsG 

(2.24) 

U*(S./,) T(SA, ; SB, ; S..I,+~)""" T(SA,+,.. ; SBt+, . ;  SA,+,..+ 1 ) U l + m  + I(SAt+..+.) 
~rn(n+ 1)~/" G 

where 

(2.25) 

u * = v * z M  if - p + l < ~ l < ~ p  

ut=vxM if - p ~ < l ~ < p - 1  

u;~(sA,) = e x p [  - �89 VA,(SA.)]  = u , ( S . )  if l =  - p  or p 

and X G is the normalization to have a probability measure. 
Next, we assign to a polymer R its (not necessary positive) "fugacity." 

First, we set 

~ ( R ) = f  #R(ds~) YI O~ 1--[ Qlc(sc) ]-I Q2(Sc) (2.26) 
C E Ft ~, F2 C ~ F3 C ~ F4 
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where O~ see Eq.(2.4). One can then check that the partition 
function 3, A may be written in the following way: 

1 V ~'A = ?2P"( v e x p [ -  �89 V,4_~], Z M ) ( V *  exp[ - ~ Ap], ZM)(  ( 1):r ZM) ) 2p- 1 

X I I +  ~ }-', I~ ((R,) 1 (2.27) 
k>~l R1,...,Rk: i = 1  

l~i~A,l <~i<~k, 
Ric~l~i,=f~,l <~i<i'<~k 

Here the internal sum is taken over all (unordered) collections of polymers 
for which the conditions indicated are fulfilled and 

((R) = w .  

x [((vv*, z . , ) )  - "  

x { [ ( v  exp[-�89 V~_ "], Zm))$(-P'~)((v * exp[-�89 VA, ], Z~))i("~) ']  }-1 

(2.28) 

where fi(l, R) = 1 if Azg/~  and 6(l,/~) = 0 otherwise. 
The term in the square bracket in the RHS of (2.27) can be interpreted 

as the partition function of a polymer system with a hard-core interaction 
and fugacity (. The product in front of this term is the partition function 
of the system of noninteracting A-blocks. 

Notice that the fugacity ( (R)  depends in general on p (this is the case 
of those polymers that include the border blocks A+_p). However, this 
dependence is rather weak and does not affect the argument used. 

Furthermore, introducing parameters w o and wl as specified in (1.24), 
one can produce a "full" polymer expansion for X.~ where the complex 
terms are taken into account. This leads to a more complicated definition 
Of a polymer, which nevertheless is based on the same kinds of ideas. The 
rigorou s scheme repeats the one from ref. 1 and we will not go into tech- 
nical details. The corresponding complex fugacity of a polymer is again 
denoted by ((R); it contains, apart from the factors 0;, i = 0, 1, 2, some new 
terms 03 that are complex analogues of 0 ~ See ref. 1 for further details. 

In order to control our cluster expansion we need to estimate the 
fugacity of a polymer. We start by studying the contribution coming from 

2 the terms Oc(Sc). Let us first specify the indicator functions ZM- The 
parameter M runs over R +, the positive half-axis. The function ZM(s~i), 
i = - p  ..... p, is defined as the space translation of a function ZM(sZ-), s t  e S/'. 
The latter is the indicator of the set 

L {sr=(sj ,  j ~ [ O , L  1])eSL:[lSjff2<<.M(l+r(j))} (2.29) S / I r  ~ - -  . 
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where the norm H '[Iz is defined in (1.48) and 

r(j) = rain[log(1 + j ) ,  l o g ( L - j ) ]  

Given a positive integer N, let E ( =  EN) be the probability density on 
SE0,NL-13 (with respect to the measure dSEo, NL_ 11) of the form 

E(sEO, NL-- 11) __ U*(S(1) )  T(s(l); S(2 ) ) ' ' "  T(s(N-1); siN)) U(s(N)) (2.30) 

~[O,  NL-- 11 

Here, the path configuration s(~ [(~-x)L'iL-xl is the restriction of 
SEO, NL_13 to the interval [ ( i - -  1)L, iL-- 1], i =  1 ..... N. Furthermore, the 
function u*(s (1)) is either v*(s (1)) or e x p [ - � 8 9  VEo, L_11(s(1))] and u(s (N)) is 
either v(s Ira) or e x p [ -  �89 VEIN_ 1)L, NL- I(s(N))] (all the combinations are 
possible); cf. (2.23). Finally, ~O.NL-~1 is, as before, the normalization to 
have a probability measure. 

Given J_~ [0, N L - 1 ] ,  we set, in analogy with (1.51), 

k(J)(~ ~ =" f dSEo, NL- 1] \J  E(S[o, NL-- t ] \ J  V S j) E ~ J ]  ,J~[O. NL- l]\d 
(2.31) 

By Lemma 3, we get an estimate: for any J =  [0, NL - 1], 

k~)(s s) <~ exp l - j ~  (c* llsfl ~ -6 ) ]  (2.32) 

In fact, the probability density EE0,m_l I is either of a form assumed in 
Lemma 3 or the limit of those densities. The constants c* > 0 and 6 do not  
depend on N and L. 

Moreover, for the probability measure #e  on S E~ 11 with a density 
E of the form (2.30) and for any j = 0 ..... N -  1, we have 

#e({SEo, NL_ 11 : ZM(S(-0) = 0}) ~< ~1 exp ( "  ~2 M2) (2.33) 

The constants ~ and 72 again do not depend on N and L. 
Indeed, the bound (2.33) follows easily from 

(2.29)-(2.31), the bound (2.32), and the estimate 
the definition 

f~s~ s: tlsll >--y} ds exp( - c* Ilsll 2) < exp [ - (c* -- e) y2] fs ds exp( - ~ Ils[I 2 2) 

provided that we are able to prove that the integral in the RHS is finite for 
any e > 0 .  

The last assertion may be proved in the following way. Given 



Gibbs States for 1 D Lat t i ce  Boson Systems 1013 

s =  (x, co), we use the definition of the norm Ils[12 2 and the Schwartz 
inequality to write the bound 

flstl~ >~ flx2 + 2x dt co(t) + f1-1 dt co(t) 

which implies 

;sdsexp(-eHs[l~)<-N;RdXfwP(dco)exp{-efl-~[flx+f:dtco(t)] 2} 

Performing in the RHS the integration in the variable x, we get the desired 
result. 

The following theorem is the crucial ingredient to control the terms 

Theorem 2.1. There exist positive integers Lo and positive 
constants c3, c4 such that for any L >  Lo and M >  1 and for any s, s' eSM 

J "(s; s') ] 
"F'v(s) v*(s') 1 ~<exp[CxMZ-n  exp ( -C2M2) ]  (2.34) 

Since the proof of Theorem 2.1 is similar to that of Theorem 2.1 of 
ref. 1, with the estimate (2.33) playing the role of the bound (2.4) of ref. 1, 
we omit it. For estimating the terms 0 ~ and, in a complex domain, the 
terms 03, one again proceeds in a way similar to ref. 1. It is convenient to 
summarize all the bounds in Proposition 2.2 below. In this assertion, the 
condition that M, n, and L are large enough and Wo and wl are small 
enough means the following. First, we impose the restriction M~> M ~ and 
n I> n ~ where M ~ and n o depend only on fl and the potentials ~ and ~a, 
d>~ 1. Then, for M and n satisfying these conditions, we take L/> L ~ where 
L ~  L~ n). Finally, for M, n, and L that satisfy the above restrictions, 
we consider w 0 and wl with max[[wo], [wl[] ~< w ~ where w~ w~ n, L). 
The claim is that we can guarantee a proper choice of the thresholds M ~ 
n ~ L ~ and w ~ [in bounds (2.40) and (2.44)-(2.46) below these thresholds 
depend on a parameter a].  Note that all the estimates that follow are 
claimed to be uniform in p. 

Proposition 2.2. Given M, n, and L large enough and w o and wz 
small enough, the (complex) polymer fugacity C(R) satisfies the bound 

I((R)I ~ l~ ~c (2.35) 
CE FI ~ F 2 ~  I ' 3v  F4 
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Here, for C = {D, D' } ~ CgA, 

~12M2n2(l+w2)log(nL+x) I M z ] }  
~ c = m a x  [ rcr-~c~-- ~ ,6~exp --c* --ff-log(rc+ 1) 

(2.36) 

where rc is the total number of blocks of the both types, A and B, situated 
between D and D', whereas for C ~ ~A w ffA, 

~c(M, n, L, w) 

=max {lOOMZl~ + l)n[log(L + )F(L) +WLI 

+ C* 2 ~4M2)]t lOOnLw, 6?. exp ( -  -~ M ), exp[~iM2-n exp( - 

(2.37) 

The constant c* comes from Lemmas 3, and 73, 74 from Theorem2.1; 
w = max[w0, wl]. 

The proof of Proposition 2.2 is similar to that of Lemma 3.1 of ref. 1. 
In the proof one uses Theorem 2.1 together with (2.33) and the following 
fact: 

( Isil, Isjl ) (2.38) 
IO d(S,, ss)l <<. ( i_ j )2  log(1 + [i--J[) F( l i -  jl ) 

where 

<lsA, Isjl> ~ Ixi+wi(t)] Ixj+wj(t)l dt 

�89 ~ + Ilsjll ~) (2.39) 

As before, we omit the details, referring the reader to ref. 1. 
It now can be checked (cf. ref. 1, Proposition 2.2) that for M and large 

enough we have, for some constant ./V" > 0, 

�88 < (v~*, z~ )  -< (vv*, zM) ~ 1 

( vz-h'2 ) 

~4/'R ~< JV 2 
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Furthermore, for every polymer R the following inequality holds: 

]R]-..< 3 # (/"1 w/"2 w/"3 u/"4) 

where IRt denotes the number of blocks of type A or B contained in /~. 
It then follows that, given ~ ~ [ 1/2, 1), we can choose n, M, and L large 
enough and Wo and wa small enough so that, for every polymer R =  
(/"1, /"2,/"3,/"4), the complex fugacity ((R) admits the bound 

IC(R)I ~ ~R~ I~ g~ (2.40) 
C~ I'I w F 2 v  F3~ I'4 

where 

g~ = 23,A#4~ (2.41) 

The bound (2.40) is the basic ingredient for proving the convergence of the 
cluster expansion. More precisely, proceeding as in ref. 1, Lemma 1, we get 
the following result. 

P r o p o s i t i o n  2.3. Let ZA denote the polymer partition function 
figuring in the square brackets in the RHS of (2.27) (for the complex 
perturbation of the Hamiltonian): 

k 

~A = 1 + Z Z ]-I ~(&) (2.42) 
k>~l R1,...,Rk: j = l  

l~i~_A,1 <~i<.k, 
] ~ i n R i ' = ~ , I  < ~ i < i ' ~ k  

and x be given by 

~ =4g{a0, al} + Z gc (2.43) 

[see (2.36), (2.37), and (2.40)3. Then, given o-~ [1/2, 1), we can choose n, 
L, and M large enough and Wo and Wl small enough so that the estimate 
(2.40) is fulfilled and the following bounds hold: 

1 
exp ~c < x/~( 2 _ x//_~) (2.44) 

sup ~,, 
V={Ai . i~ [ - -P l , - - . .P]}  R : V ~ _ k ~ A  
V {Bi. iE[- -p l , , . . ,p]}  

[ 1 -  ( e~ -  1)] -G(x ,a)  (2.45) 
I((R)I ~< a~: 1 + a2e ~ -- 2o-e ~ 
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and for any polymer R 

k 

Y H I((R,)r 
k >~ l RI,...,Rk i = 2  

R I = R  

exp [G(x, ,,/~) ]R[ ] 
~< ((R) (2.46) 

1 - , f g  exp ,/g)l  

Here Q denotes the standard MSbius function: 

1 
o(R1,...,Rk)=k-"~. ~ (--1) #(eages in g) (2.47) 

g ~ G ( R 1 , . . . ,  Rk)  

where G(Ri,..., Rk) stands for the set of all connected subgraphs of the 
graph with k vertices {1,..., k} and with the edges corresponding to those 
pairs (i,j) for which R i c ~ R j r  [the sum in (2.47) equals zero if 
G(R1 ..... Rk) is empty one if k = 1]. 

By using Proposition 2.3, we can control the standard cluster represen- 

=A = exp Z E o(R,,...,Rk) ((Rj) (2.48) 
k>~l R1,...,Rk: j = l  

l~ i~A, l  ~i<~k 

tation 

which follows from (2.42). 
Now we can give the proof of Lemmas 1 and 2. The expansion argu- 

ment provided so far allows us to prove the assertion of Lemma 2 about 
the analytic continuation of 2A and the boundedness of 12,tl. Furthermore, 
we are able to prove the uniform convergence of the analytic functions 

lim 2A = 2 
p --* oO 

while the parameters M, n, and L and w 0, w 1 are kept fixed (but are chosen 
either large enough or small enough, respectively, in the sense that was 
specified above). 

The analysis of the kernels k~ s) and CA(') for the operators that are 
specified in the formulation of Lemma 2 is based on similar expansions of 
quantities E(AJ)(xj, Ys), x j, y j  e R s. 

Let us start by discussing the limit relation (1.30). We again assume 
that A is of the form specified above. (This assumption will soon be 
dropped.) Let us suppose for definiteness that J is a subset of B-block Bo. 
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Proceeding in the same way as before, we can write the following represen- 
tation for the quantity under consideration: 

~- , (J ) (X j ,  y j )  = 7 (2p- 1)n<v e x p ( -  �89 VA_p), ZM) 

X (V* exp(-- �89 XM)((V*V, ZM>) 2p-2 

X f dSAo dsA~ dsso\e dcos T(sA0; sB0\s v s:; sA~) 

x 1 + ~ ~ ]--I ((Rj; x j, y j) (2.49) 
k >1 1 RI,...,Rk: j =  1 

l~ i~A, l  <~i<~k, 

Here g:= (x s, y j; co:) and the quantity T(sao; Sso\s v ss; sAl) is defined by 
formulas similar to (2.8), (2.9). The sum in the square brackets has 
the same nature as before [cf. (2.27)]. The definition of a polymer is 
again the same and the definition of the polymer fugacity ((R; x j,  y , )  
follows a similar idea I-of. (2.23)-(2.26) and (2.28)]. This fugacity now 
depends, in general, not only on p, but also on x,, y j, but, as before, this 
dependence is rather weak: it affects only the polymers R for which 
- ~ ( A _ p w  Ao w Bow AI W Ap)# Z .  

Finally, introducing the parameters w0 and wl as specified in (t.24), 
we are able to produce a full polymer expansion for -~(xj,  y,) with 
complex terms. We again denote the corresponding complex fugacity by 
((R; x j, Ys). 

Our final aim is the same as above: we want to control the cluster 
representation 

~2A(xj, y j) = exp ~ o(R~ ..... Rk) I] ~(R,; xs, y j) 
1 R1,...,Rk: j ~  1 

l~ i~A . l  <~i<<.k 

(2.50) 

for a polymer partition function 7,A(xs, YJ) given by the term in the square 
brackets in the RHS of (2.49). 

An analysis of the scheme of estimating the various terms contributing 
to ((R; Xs, y.,) shows no major differences with the above construction. 
There are two changes worth noting. First, the threshold values Mo, no, 
and Lo and Wo, w l depend in general on x s and yj. Second, we use the 
assertion of Lemma 3 for both cases, for the denominator -~A as for 
Z~S)(xj, yj), because the measures #G figuring in the definition of the 
polymer fugacity either have denominators of this type or are limits of 
those measures. 
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After performing the necessary estimates we arrive at assertions that 
are similar to Propositions 2.2 and 2.3 and give the desired control of 
the convergence in the representation (2.50). Having the control of both 
expansions (2.48) and (2.50), we can proceed in a standard way and 
guarantee the existence of the limit 

lim k~~)(xj, Y.r) = k(J)(xJ, Yj) (2.51) 
p ~  o9 

while the parameters M, n, and L and Wo, wl are, as before, kept fixed (but 
again chosen large enough and small enough, respectively). More precisely, 
we choose values of these parameters so that the assertions of Propositions 
2.2 and 2.3 and their analogues for ((R, x j, Ys) hold and then perform the 
limit p ~ oo. The same scheme is used in the argument that follows. 

In addition to (2.51), we get a representation of the limiting kernel 
k~S)(xs, y j) in the form 

k(J)(xj, YJ)=exP {k~>~ 1 2 
RI,...,Rk : 

Ric",(Aow BO',.,~ At) ~ f~ 
for some  i~  { l , . . . ,k} 

p(R1 ,..., Rk)  

x[ ,252, 
j = l  j = 1  

Note that, for the polymers figuring in the expansion in the RHS of (2.52), 
the fugacities ( and ((R; x j, y j) do not depend on p. 

Let us now comment on how to extend the limiting relation (2.51) to 
the general case A/" Z. Given an interval A c Z, we can "fill" it with our 
A- and B-blocks as indicated (with p =  PA = [-(]AI- L)/2(n + 1)]), with 
the proviso that the "border" blocks A _+p have, in general, a greater length 
{for example, we can include, in each of these blocks, half of the rest length 
[ A [ -  L[2p(n + 1)+ 1 ] }. Then we can proceed in the same way as before, 
estimating the difference between k~S)(xj, Ys) and k(S)(xj, Ys) in terms of 
p•. While A/" Z, P4 tends to infinity, which guarantees the convergence 
in (1.30). 

In fact, we are able to do more. By using the argument developed, we 
can prove that, given a finite J c  Z and x j, y j e R  J, the kernel k~~ yj)  
admits an analytic continuation, in the variables Wo, w~, to (9o x (9~, where 
d)t, / = 0, 1, is a neighborhood of the origin in C (which depends, in general, 
on xs, y.,, but not on A _ J .  Furthermore, these analytic functions con- 
verge, uniformly in (Wo, wl)~(90x(.0~, to a limit, as A.~Z.  The limiting 
function is nothing but the analytic continuation of ktJ)(xj, y j). 

Moreover, the formulas determining fugacities ((R; xs, y j) show that 
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Co and Ca may be chosen independently on Xs, ys and the series under 
consideration converges uniformly in xs, Ys provided that these variables 
run over a compact set in R:. 

The same argument is used for proving the analyticity, boundedness, 
and convergence of ~bA(a), where a is an operator of the kind considered in 
assertions (b) and (c) of Theorem 2. To avoid repetition, we omit the 
detailed argument. The reader can reconstruct it from the corresponding 
discussion below related to ~ba(p 2) (which is apparently the most difficult 
case from the technical point of view). 

A cluster expansion argument is used also for proving the mixing 
property (1.32). Here, the main construction has to be slightly modified. 
Namely, for u large enough, (xj.~, ys~) and (Xs.:~, Ys~sc2~) are associated 
with nonadjacent blocks. If j m  and S ,J  ~2) belong to, say, blocks Bsl and 
B:.2, respectively, then, in a cluster representation for 

k ('")w SuJ(2))(Xj(l) V S u x j ( 2 )  , yj~,) V S u y : z ) )  

[which is similar to (2.51)], the condition 

Ri(h (A A u B A u Ajt + i w As2 u BA u Ay2+ I) ~ J~J 

becomes "almost equivalent" to one of the mutually disjoint conditions 

ki:~(Aj, uB:,uA:,+l):Aff: ,  but kic~(Ay2uBj2wA:=+l)=:2: 

o r  

I~ i~(Aj2uBJ2uAj2+, ) r  but Ric~(Aj~wBj, wAj,+I)=f2J 

More precisely, the polymers R i whose supports have a nonempty 
intersection with both A jl u Bjl w AjI + 1 and Ai2 u Bi2 u As2+ 1 give a 
contribution that vanishes as IJ~ -J21 --" oo. This leads to relation (1.32). 

The bound (1.29) (in the real domain) follows from the assertion of 
Lemma 3 [see (1.66)] for the case of a measure m• with the denominator 
ZA- Indeed, by integrating the RHS of (1.66) in ps(de)j) while Xs, y s 
remain fixed gives a function k(.J)(xj, y j) with the desired properties. The 
last fact may be proved by repeating the argument used for establishing 
(2.33). 

To prove the bound (1.34), we proceed as follows. First, we write 

[ z ( lIF 
L JL J 

[cf. (1.62)]. (Recall that the function ~ is assumed to be nonnegative.) 
Repeating the scheme elaborated above, we can prove the convergence to 
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a finite limit, as A ,z Z, of the ratio ~a(~:)/ZA. Hence, this ratio is bounded 
uniformly in A. The remaining ratio 

~(J~(xj, x j  ~(x~) 
~A(~) 

does not exceed, in view of Lemma 3, the RHS of (1.66). This gives the 
desired result. 

A bit more sophisticated reasoning is used for proving the rest of 
Lemmas 1 and 2. We begin the discussion by proving the analyticity, 
boundedness, and convergence of the derivative (1.35). Again to avoid 
repetition, let us consider the second derivative only. 

The starting point is formula (1.59). We see that the problem is 
reduced to proving that the ratio of a single addend in the parentheses and 
the denominator SA possesses the aforementioned properties. For definite- 
ness, consider the ratio ='(S)~x ,, ~(2)/~ As we noted before, we can ~ A  ~ J~ . ,Vd]lj  /~"A"  

consider separately each addend arising in the braces [ . .-]  in the RHS; 
we again confine the consideration to one of them, say, the quantity 

fwJ dPJ(c~ fsA\s dSA\s(Va)(2)(gJ v SAW ) exp[ -- VA(gj V SAW)] (2.53) 

~j = (x j, y~; co j) 

{we omitted the nonessential factor e x p [ -  1/2fl Zips (xs-yj)2] }. Further- 
more, we expand (2.53) into the sum 

(ZA) -I ~wsdPS(ogs) ~SA\sdsA\s~O(Z)(sj)exp[--VA(gJ 

j ' ~ A : j ' # j  J 

(2) . ~. • fsa\~ dsA\j~ IJ'-Jl( J, sJ') exp[ -- VA(gj 

v sA\j] 

v sa\j)] (2.54) 

where gj=(xj ,  yj;ogj), g ; = ( x r ,  ys;o9 ;)  for j ' 6 J ,  and gj,=ss,=(xs,;ogj,) 
for j '  ~ A\J.  

We claim that a single addend in (2.54) admits an analytic continua- 
tion, in the variables Wo, Wl, to a complex domain, of the same type as 
before, and that: 

(i) this domain may be chosen independently of an addend, and also 
of A ~_ J and of x j, y j  running over a compact set O c R< 
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(ii) The whole series (2.54) converges uniformly in w0, wa varying 
within this domain and uniformly in A _~ J and in the variables xs, Ys s O. 

Furthermore, as A ,7 Z, each addend tends to a limit, uniformly in Wo, 
w~, xs, and y j  in the same sense as above, and the limiting (analytic) 
functions form a series that converges, in the complex domain under 
consideration, again uniformly in the same sense. 

To verify these statements, it is convenient to take a single addend in 
the "positive" and "negative" parts as was explained before and treat them 
separately. Again for definiteness, let us consider the term corresponding to 
a fixed j ' r  J and take its positive part only: 

=, yJIU''/ 'J + (2.55) 
~ A  

where 

EG~.,)(x,, ,~(2)-1 YJ)Jj, j 'J  + 
(2) - 

= fws dPJ(~ fs,~\s dS A\j [ ffJ lj '-jl(Sj,  Sj' ) ] + 

x exp[--  VA(gs v SAxs)], ss = (x j, Ys; ms) (2.56) 

For the sake of simplicity, we can assume that j = 0 ,  J =  {0} and omit 
the subscripts j ,  J, and + and the superscripts (2) and (J) from the 
notation, writing -~L(x, y ) / i n s t ead  of [(~(AJ)(xj, " )(2)n YJ j,j'J + �9 

The analysis of the term (2.55) proceeds in a way similar to that for 
Z(aJ)(xj, ys)/E,A. We can write for ZA(X, y ) /  a representation similar to 
(2.49). The point is that the threshold values M ~ N ~ and L ~ and w0, wl 
can be chosen independently of j '  and x , ,  y j  running over O. Therefore, 
the series that arises have a radius of convergence that does not depend on 
xs, y s~O.  Furthermore, by virtue of (1.5), the sum may be estimated by 
the quantity 

const - ]-d 2 log(d+ 1 ) F(d)] - 

which guarantees the uniform convergence of the series (2.54). 
Similar reasoning is used for establishing the bound (1.36). Let us 

again discuss the case # = 2  and consider the contribution from 
(S~J)(xs, ys))] z). As before, we decompose it according to (1.60). For diver- 
sity, we will consider the term [(VA)~I)(sj v sA\s)]< A single term in the 
corresponding series is related either to ~o(l~(s/) z or ~o(1~(si) ,/,(~) t~ st), or 

( I )  ( 1 )  �9 ~k U_y,l(si, si') 01./-j"l(sJ , S/"), d', j " e  A \ { j }  

822/70/3-4-33 
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For definiteness, consider a term that corresponds to 

~,ll)_},l(sj, sj,)$l))_j,,,(sj, sj,,), j ' , j "  e A \ J  

Such a term obviously does not exceed the ratio 

-~JJ~i:i'.i"J 
~ A  

where 

L ~ - - A  t,l-g~'(J)(xJ ' ~ ~'l(1) -I + " ~ d l J j ; j '  j " . l  

x ]~lj_S,,t(sj, sj,,)] exp[ - VA(S J v SA\j)], S j= (Xs; OOj) (2.57) 

As before, we assume for simplicity that j = 0  and J =  {0} and omit 
excessive indices from the notation. According to (1.5) and (1.9), (2.57) is 
less than or equal to 

[[j,12 log(lJ'l + 1) F(Ij'[ )] --1 [[j,,12 log([j"[ + 1) F(Ij"[)] -1 

Xfw de(coj) fsa\io I dSA\{O} (llsoH1 + 1)2(llss,II x + 1) 

X(]ISj,,HI+I)exp[--VA(SoVSA\{O})], SO = (Xo; O90) (2.58) 

Hence, all we need is to prove the bound 

~,~(x)j,.j,, < exp[ --?,(x 2 - 72)3 (2.59) 
~ A  

with constants 71 > 0 and 72 e R independent of j ' ,  j "  and A. Here 

2= ~(x )s,,s,, = fw ds \,o  (ltsoll, + 1)2 
~ A  

• (llsj,lll + 1)(Hss,,lll + 1) e x p [ -  VA(So V sa\~o~)] (2.60) 

This may be achieved by using the assertion of Lemma 3 [with the integra- 
tion in dP(o~o) over W]  for a measure with the denominator ZA(6~ where 
.7= {O, j ' , j "}  and 

~ j =  (tlsolll + 1)2(llsrll a + 1)([Isr, II 1 + 1) 
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A P P E N D I X  

We prove Lemma 3 by using an argument similar to the one from 
refs. 11 and 12. To make the exposition easier, we wilt use, wherever 
possible, the notations from ref. 12, or those close to them. Let us start by 
proving the assertion of Lemma 3 in the simplest case of the measure with 
the denominator 2A. As in refs. 11 and 12, we deal with a sequence of 
volumes (cubes) [q], q =  1, 2 , . ,  where 

[q'l = { j =  (ja,..., j~)~ Z~: IJil ~/q) 

we choose and a sequence of positive integers lq so that 
[lq+t/lq-(1-k-2~)l <c~, where a > 0  is a constant. The volume of [q]  is 
denoted by Vq: Vq= (2lq + 1) ~. We denote by I1~1/the norm (1.48) with r =  2. 
The key technical assertion is the following proposition (cf. Proposition 2.1 
from refs. 11 and 12): 

Proposition A.1. Under the conditions of Lemma 3, for any e > 0 
and C>~0, there exists c~~ such that for any ~ ( 0 , ~  ~ one can find 
P I> 1 and a monotone increasing sequence mq, q = P, P + 1 ..... with ~D'q ~ 1 
and limq_ ~ ~)q  ~-- 0~, such that the following holds: Let A c Z ~ be a finite 
set and g~ = (gj) be a path configuration from ~A. Suppose that q/> P is the 
largest integer for which Zj~ [q] o A IIgjll 2 ~ W q~) q. Then 

Z c +  Z F t �89 + Ilej,ll:) 
j ~ [ q + l ] ~ A  j ~ [ q + l ] ~ A  j ' ~ 'A \ [q+l ]  

<~e ~ tlsfl 2 (A.1) 
j ~ [ q + l ] ~ A  

Moreover, if e and C and c~, c2, _c, ~, and i figuring in (1.7), (1.64), and 
(1.65) are varying within compact sets (in the case of e, c~, d, and q - -  
separated from 0), then c~ ~ and--for  any ~e  (0, c~~ and {~Vq, q>~ P} 
may be chosen independently on these values. 

We omit the proof of Proposition A.l: it repeats that of Proposi- 
tion2.1 of ref. 11. In what follows we fix e~(O,c~/3), C=c2, and fix 

~ (0, ~o). Given A = Z v, denote by ~tl 0 the set of the path configurations 
g ~ A  for which ~ie[q]~A [lsjll2~qVq for any q>~P and by ~Rq, q>~P, 
the set of the path configurations gA for which q is the largest integer i> P 
with Y ~  [qj ~,A Ilsjll z > WqVq. 

An important corollary of Proposition A.1 is as follows. 
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P r o p o s i t i o n  A.2. (a) Let a path configuration ffA~q, where 
q ~> P. Then 

- v~ (gA)  + vA ~ Eq+ l l (g~ ~ Eq+ 11) 

~'~ ( - -  Cl -1" 3~) 2 I }S j [12 - -C t '~ i~q+lVq+l  

j e  [q+ 1] 

where the constant C '>  0 does not depend on A. 

(b) Let sAe~o.  Then, for a n y j e A ,  

(A.2) 

- VA(%A) + qOj(gj) <<. D' (A.3) 

where ~0j(g)=~o p dt q~j(co(t) + Lx, y(t)), g= (x, y; co) [cf. (1.41)], and the 
constant D' does not depend on A. 

The constants C' and D' possess the uniformity property stated in 
Proposition A. 1. 

The proof of Proposition A.2 is similar to that of Proposition 2.5 of 
ref. 11 [combined with the proof of the bound (2.29) from ref. 11] and we 
again omit it. Notice that all constants figuring in the various estimates 
below possess the uniformity property. 

The partition of S A into sets 9t 0 and Uq>~e~tlq generates, for any 
J = A  and gj=(sj, j e J ) e S  s, the corresponding expansion k ( s ) t ~ -  mAYo j ]  - -  

k'(gj) + k"(gj). As in ref. 12, we are going to prove later that 

k'(sj) ~ C" exp[(g '--  ct)tlgjli2] 2] z.<J~{J})t~ ~ (A.4) '~ma t~ 

for any j e A and 

z 
q>~p L. j e [ q + l ] c ~ J  

k (~ + 1])(5 "~ (A.5) X l l a A  ~ o j \ [ q +  1]! 

where C" > 0 and D" e R are constants independent of A and J _  A and 

~ =  sup  Y~ I ~{j , j , } l  
j e Z  v j ' e Z V : j ' ~ j  

[cf. (2) and (3) in ref. 12]. 
Having proved (A.4) and (A.5), we can establish, by using an 

induction on the card of j,~tz) that 

k~(gs) <~ exp [j~s (E llgj[lZ + F) ] (A.6) 
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for some constants E, F ~  R [cf. (4) in ref. 121. The next step is to check 
that indeed a stronger inequality holds: 

k~](gJ) ~<exp { ~  [ ( - c ,  + 3e)t1~jtl2-4 - c51} 
j~J  

(A.7) 

where 6 > 0  again does not  depend on A, J c A  [cf. (5) in ref. 121. The 
assertion of Lemma 3 then follows with c1" = c l -  3e, c* = c5. 

The choice of ~ is fi = ( E + c l -  3e)wpvp+ F (precisely as in ref. 12). 
If 11~iJ]2~< wpvp for any j e aT, (A.7) follows from (A.4). Therefore, we can 
assume that l[~rlz>~veve for some j s J .  Then k'(g~,)=0 and kmA(Sj)(J) - --  

k"(L,). 
By using (A.5) and an induction on the card of or, we can write in this 

case (~2) 

k(J)ma ~<exp I ~ ( - -c ,  + 3~) H.~j[,21 
j e J  

x ~ exp{ --Cttt~ffq+ll)q+l + O " v q +  1 q-~  c a r d ( J \ [ q +  11)} 
q>~P 

~<exp { - j ~ j  (el-- 3e),]gjH2+6card(J\[P+l])} 

<~ exp [ -  j~j ( c l -- 3e ) lI~j'12 + O card J 3 

which finishes the proof  of Lemma 3. 
It remains to check the bounds (A.4) and (A.5). The reasoning is again 

similar to ref. 12 (cf. Appendix in ref. 12). We write 

k'(gs) = F"A1 fs~\~ dsA\sx'~~ v SA\j) exp[ -- VA(s v SA\j) 1 

~< exp[ -- Vj(gs) ] ZA -1 fs~\~ dsA\sz'~~ V S A\ j )  

• exp[ - -  VA(s'j v sa\s)]  

x expl-�89 = + IIs;l[ =) ~ +  2D']  (m.8) 

Bound (A.8) follows from Proposition A.2(b). 
Now pick a subset So=  {s~S: Ilsl12~ 1}, then for any finite j c Z "  

fs~o ds~ exp[ - V,~(s,~)]/> 2 . . . .  d ~ (A.9) 
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where ,t > 0 (see below). Then the RHS of (A.8) is 
1 - -  - 2 <~ 2 exp(2D') exp( - cl tl~jll 2 + c2 + ~ ~e IlsslI + �89 q') 

X ,~A 1 ~ dS~A\J)w {V} exp[-- VA(gj\{j } v s~a\s)~ {j})] 
"S (a\l) v {j} 

~< C" exp[(~P- C1)i[~sll Zl k(S\iJbtff ~ (h.10) rn~ ~ j \ { j }J  

which proves (A.4). 
Furthermore, 

k"(gj) = ~ 3 ~ 1 f  dsA\jZ~q(g s v Sx\s)exp[--V~(gs v SA\j) ] 
q >1 p JsA\J 

<~ E ~_.~1 [ dsA\jX~q(S s V SA\ j )  
q >1 p "~Sa\J 

xexp r X ~ I ~u~s,s')l �89 2 + lls, "I12) ] 
t-j~ [q+i]~A j'~A\[q+1] 

xexp 2 I~U,/}I~(tI#II + II-~j'll =) 
j e [q+l] , ' ,A  j '~A\[q+l]  

x exp[- VA(Sj \ [q  + 1] V S(A\J)X[q + 1] V S[q+ 1] ~ A) 

+ V[q+l]c~A(S~q+l]~A) ] (A .11 )  

As before, the bound (A.11) holds for any (sequence of) path configura- 
tions S'tq+,l~A6S Eq+~3~A, q>~P. By using PropositionA.2(a), we 
continue (A.11) by estimating the RHS as 

~< Y' exp ~ ( - - q +  ~)lls/I --C~7~Tq+lVq+l 
q~P jE[q+l]t",J 

X [)]. exp (~ , ) ]  eard([q + 1] ~A) 

x .E# 11SA\(Ato+,])dS'A\(S\tq+ 1])exp[ -- Va(gs\Eq + l] v s'A\(S\[q+ 1]))] 

.<< ~ exp [ ~ ( - c , + 3 ~ ) l l g / [ 2 - C  Wq+ ,Vq+ 1 +D"vq+ 
q~ P .je [q+ 1] n J  

X 1~(Sk[q + i ] ) [ ~  ])  (A .12 )  ~mA ~d\[q + 1 

which proves (A.5). 
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To prove (A.9), we observe (as in ref. 12), that 

and therefore 

where 

v~(e~)~< Z ~j(ej)+ 9 Y, lleA 2 
je .d  j ~ 2  

fS~o ds3 e x p [ -  V~(s~7)] 

<- I-1 s dsexp[-q~j(s)- ~/Isl12"l 
j ~  SO 

~card/~ 

2 = i n f [  ds exp[  - q~j(s) - g~llsl[ 2]  > 0 
j "sS 0 

The last estimate follows directly from the properties of the Wiener 
measure and the conditions imposed on the potentials ~i" 

The proof  of the assertion of L e m m a 3  for other types of measures 
does not differ from the case of the measure with the denominator ZA. 
In fact, what matters is the system of bounds (1.7), (1.64), and (1.65). 
The extension of the proof  to other cases is immediate and we leave it to 
the reader. 
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